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There have been no simple equations available to predict the effects of arbitrarily 
shaped voids over the entire range of porosity encountered in real materials. Empirical 
expressions have been proposed, but they agree neither with appropriate theoretical 
analyses nor with extensive experimental data. Theoretical predictions have been 
linear in porosity and thus predict an insufficient reduction. Only a few analyses account 
for void shapes other than spherical. The present work represents a semi-empirical 
approach to fill these information deficiences. 

1. Introduction 
Porosity has been a continuing problem, with 
regard to both strength and modulus, for many 
classes of materials, especially ceramics and rocks. 
There have been increasing demands placed upon 
materials specialists to develop an ever-growing 
variety of new materials and their associated 
processes. As a result, not only have materials 
with intentional porosity been developed, such as 
syntactic foam for submersibles and those for 
orthopaedic uses, but also many processes used 
to manufacture filamentary composite materials 
result in high volume fractions of highly direc- 
tional voids. Since it is costly and time consuming 
to test all configurations and combinations of 
materials, it is highly desirable to have math- 
ematical expressions for predicting the effects 
of different kinds and amounts of porosity on 
Young's modulus. 

Empirical predictions of the effect on strength 
[1], Young's modulus [2], and shear modulus 
[3] have taken the form of a simple exponential. 
For example, for Young's modulus [2] (E): 

E/Eo = e -bEvp (1) 

where Eo is the Young's modulus of the fully 
densified material, Vp is the porosity (volume 
fraction of pores), e is the base of the natural 
logarithms, and bE is a constant determined 
empirically from experimental data. 

2220 

Another form of empirical expression was 
proposed by McAdam [4]: 

E/Eo = (1 -- Vp) m (2) 

where the only empirical constant is rn. 
The results of various theoretical analyses of 

the stresses induced in an isolated spherical cavity 
in an infinite medium subjected to all-around 
spherical tension and to pure shear have been 
applied to the prediction of the effect of spherical 
porosity on the bulk and shear moduli, respect- 
ively. Apparently, the most accurate of these 
analyses are those of Mackenzie [5] and of Hashin 
[6]. Their expressions for bulk modulus are 
identical and exact, while their shear-modulus 
expressions differ somewhat. 

In an attempt to obtain better estimates of 
the Young's modulus at relatively high inclusion 
volume fractions, Paul [7] applied the Voigt 
model (rule of mixtures) to a cubic shaped 
inclusion. By setting the properties of the 
inclusion material equal to zero to cover voids, 
one can reduce Paul's equation to the following: 

E/Eo = ( 1 - - g ~ / a ) [ 1 - - ( 1 - - g ~ ) V ~  2/3 -1 

(3) 

Later Ishai and Cohen [8] applied the Reuss 
model (inverse rule of mixtures) to a solid con- 
taining a cubic shaped inclusion or void. For the 
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case of voids, their equation is: 

EIEo = 1- -  Vg/3 (4) 

The first rigorous analysis of the elastic moduli 
of solids containing isolated nonspherical voids 
was carried out by Wu [9]. He treated a general 
spherical shape of cavity or inclusion, and presented 
quantitative results for three limiting geometrical 
shapes: disc, needle, and sphere. However, in all 
cases, the slope of E/Eo against Vp was constant 
and thus unrealistic, except at very low porosities. 

Janowski and Rossi [10] noted that the initial 
slope of the E/Eo against Vp curve is an index 
of pore shape, which they attributed to stress 
concentration. This hypothesis was pursued in 
detail by Rossi [11], who claimed that the initial 
slope, dR(O)/dVv, of the R ( - E / E o )  against Vp 
curve is exactly equal to the negative of the stress 
concentration factor*, Ko, for an isolated pore 
(Vp = 0), i.e. 

dR(O)/dVp = -- Ko (5) 

Rossi checked his hypothesis by noting that it 
gives the correct theoretical values of dR(O)/dVp 
for a spherical void (--2) and a cylindrical void 
oriented parallel to the loading direction (--1) t 
Then Rossi applied his hypothesis to an axisy- 
mmetric ellipsoidal void by curve-fitting a simple 
hyperbolic curve to the theoretical results of 
Edwards [12]. The resulting expression was as 
follows: 

R = 1 --(3 + 5a/c)(Vp/4) (6) 

where e/a is the aspect ratio of the void (ratio of 
the void length parallel to the loading direction 
to its width perpendicular to the loading direction). 
As can be seen, Equation 6 is still linear in Vp and 
thus valid only for small values of Vp. 

Rossi's work is the departure point for the pres- 
ent work. We attempted to generalize his work 
in two ways: (1) extend Equation 5 to arbitrary 
values of V v, and (2) a simple empirical equation 
is developed which is in agreement with Equation 
5 for small values of V v and which fits available 
experimental and theoretical data at large Vp 
values. 

2. Checks on Rossi's hypothesis and on 
a possible generalization of it 

First we verify the original Rossi hypothesis by 
comparison with experimental data and real 

materials. For spherical voids, the most accurate 
data are those reported by Hasselman and Fulrath 
[13] for artificial spherical voids. The slope 
d R / d V  v = -- 2 is in agreement with Rossi's hypoth- 
esis, but data were taken for Vp up to 0.024 
only. For cylindrical voids oriented perpendicular 
to the direction of loading, the curve presented by 
Hasselman and Fulrath [ 13], based on considerable 
test data analysed statistically by Knudsen [14], 
is appropriate. Again the initial slope o f -  3 is in 
agreement with Rossi's hypothesis. 

In the curve of Hasselman and Fulrath [ 13], as 
well as the experimental spherical-porOsity curve 
presented by Ishai and Cohen [8] for Vp up to 
0.70, the slope dR/dVp decreases in magnitude 
as Vp is increased (see the experimental curves in 
Figs. 1 and 2). Also, it is well known, from the 
theory of interacting free-surface stress con- 
centrators, i.e. including voids but not inclusions, 
that as multiple stress concentrators are moved 
closer together, their interaction causes a reduction 
in stress concentration factor (K). Thus, as Vp is 
increased, the voids become closer together and 
K would be expected to decrease. This suggests 
the following generalization of Rossi's hypothesis 
to arbitrary volume fractions: 

dR/dVp = -- K (7) 

The "initial conditions" of the R against Vp 
curve are as follows: 

R(O) = 1 (8) 

dR(O)/dVp = -- Ko (Rossi's hypothesis) (9) 

Since it is virtually impossible to measure the 
maximum stress at a void in a multi-void material, 
theoretical analyses must be relied upon to check 
the validity of Equation 5. Owing to the three- 
dimensional geometric complexity of theoretical 
analysis of a medium containing multiple spherical 
voids, no such analysis has yet appeared, although 
it is theoretically possible with the finite-element 
methods; see Agarwal et al. [15]. Thus, one 
must resort to cylindrical voids as the check cases. 

For any system of parallel, prismatic (cylin- 
drical) voids of arbitrary cross-sectional shape or 
combinations of shapes, loaded in the direction 
parallel to their axes, the reduction in stiffness 
is related only to the decrease in actual cross- 
sectional area. Thus, the stiffness ratio can be 

*The stress concentration factor is defined as the maximum stress reached in the body divided by the applied field 
stress. 
~It also checks out correctly for a cylindrical void oriented perpendicular to the loading direction (-- 3). 
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1 .0  Figure 1 Effect o f  pore volume frac- 
t ion on relative elastic modulus  for a 
solid containing spherical voids. 
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Figure 2 Effect o f  pore volume fraction on relative elastic modulus  for a solid containing circular cylindrical voids. 
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TABLE I Comparisons of gross-section stress concentration factors with the slopes of the curves of relative modulus 
versus porosity for two arrays of circular cylindrical pores 

Hexagonal array Square array 

Vp SCFgross - -  d R / d Vp Vp SCFgross - -  d R / d Vp 
[181 [181 

0.036 2.978 2.63 0.031 2.91 2.63 
0.1451 2.830 1.80 0.126 2.72 1.76 
0.3265 2.438 1.27 0.283 2.59 1.39 
0.5804 2.329 0.65 0.502 2.88 0.99 
0.7345 2.840 0.46 0.635 3.85 1.00 

expressed as follows: 

R=-E/Eo = 1 - -  Vp (10) 

Since there is no stress concentrat ion for the above 
case, i.e. K = 1 independent  of  Vp, it is seen that  
the generalized hypothesis is valid in this case. 

Another  case of  cylindrical voids for which 
theoretical solutions are available is the case 
of  a medium containing parallel, circular-cross- 
section cylindrical voids and loaded perpendicular 
to the axes of  the voids [16-19] .  In this case, 
the modulus depends upon the array (i.e. geo- 
metrical  arrangement). Fig. 2 shows the results 
of  theoretical analyses for the two most common 
arrays: square and equilateral triangular (hexag- 
onal). Table I shows a comparison of the slopes 
of  the curves with the corresponding theoretical 
stress concentrat ion factors at the same porosity.  

From Table I, it is clear that  the Rossi hypoth- 
esis cannot be generalized from its original form, 
Equation 5, to Equation 7. Because of  this, a new, 
simple empirical equation has been designed which 
is in agreement with the original Rossi hypothesis 
and all known theoretical solutions for small V, 
and which gives a good fit to available experimental 
and theoretical data at large values of  Vp. 

3. A new semi-empirical relation for 
Young's moduli of porous media 

The criteria for a good equation to predict E/Ej 
against Vp are: 

1. it should agree with known analytical sol- 
utions for Vp -+ 0, i.e. it should satisfy the original 
Rossi equation, Equation 5; 

2. it  should agree with available test data for 
large values of  gp; 

3. it  should agree with known numerical analy- 
sis for large values of  Vp ; 

4. it should be as simple as possible to permit 
computat ion by hand-held calculator or micro- 
computer,  rather than by large-scale computer.  

An equation which appears to come closest to 
meeting the above criteria is as follows: 

R =-E/Eo = [1 --  (Vp/Vp, max)] K~ (11) 

where K0 is the stress concentration factor for 
an isolated void (i.e. at Vp = 0) of  the class under 
consideration, and Vp, max is the maximum 
porosi ty  geometrically possible. Table II lists 
the values of  Ko and Vp, max for various void 
geometries. 

The equation referred to in Table II is from 
Rossi [ 11 ] : 

TABLE II Initia•stressc•ncentrati•nfact•rsandmaximumge•metr•caI•yp•ssiblep•r•sityf•rvari•usv•idge•metries 
and directions of loading 

Void geometry Loading direction KQ Vp, max 

Cylindrical, any cross-sectional 
shape 

Circular cylindrical hexagonal 
array 

Circular cylindrical square array 

Spherical, hexagonal close-packed 
array 

Spheroid of revolution square 
prismatic array 

Spheroid of revolution, hexagonal 
prismatic array 

Parallel to axis 1 

Perpendicular to axis 3 

Perpendicular to axis 3 

Any direction 2 

Parallel to axis See Equation 12 

Parallel to axis See Equation 12 

1 

0r/6)3 m ~ 0.9069 

hi4 ~ 0.7854 

0r/4)21/2 ~ 0.7405 

7r]6 -~ 0.5236 

(n/9)31/~ ~ 0.6046 
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K0 = 0.75 + (1.25a/c) (12) 

4. Conclusion 
A new semi-empirical equation, Equation 11, 
was developed to predict the elastic moduli  of  
solids with oriented porosity.  When applied to 
solids with spherical pores, it is more accurate 
than existing equations up to a pore volume 
fraction of  0.2. At  higher volume fractions, it 
predicts lower (more conservative) values than 
existing experimental data. Ishai and Cohen's 
equation [8] is also reasonably accurate up to 
a pore volume fraction of  0.2, but  predicts too 
high modulus values at higher volume fractions. 

When applied to circular cylindrical pores, 
the proposed equation is closer to available exper- 
imental data than that predicted by existing 
theories [18, 19], especially at higher volume 
fractions. 

Suggestions for further research include 
extending these same concepts to the prediction of  
Poisson's ratio and the shear modulus. Also the 
effect of porosi ty on tensile strength could be 
investigated by combining the present approach 

with that of  Stevenson and Ghosh [21 ]. 
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